View-Independent Recognition of Hand Postures
نویسندگان
چکیده
In Proc. of IEEE Conf. on CVPR’2000, Vol.II, pp.88-94, Hilton Head Island, SC, 2000 Since human hand is highly articulated and deformable, hand posture recognition is a challenging example in the research of view-independent object recognition. Due to the difficulties of the modelbased approach, the appearance-based learning approach is promising to handle large variation in visual inputs. However, the generalization of many proposed supervised learning methods to this problem often suffers from the insufficiency of labeled training data. This paper describes an approach to alleviate this difficulty by adding a large unlabeled training set. Combining supervised and unsupervised learning paradigms, a novel and powerful learning approach, the Discriminant-EM (D-EM) algorithm, is proposed in this paper to handle the case of small labeled training set. Experiments show that D-EM outperforms many other learning methods. Based on this approach, we implement a gesture interface to recognize a set of predefined gesture commands, and it is also extended to hand detection. This algorithm can also apply to other object recognition tasks.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملClassification of hand postures against complex backgrounds using elastic graph matching
A system for person-independent classification of hand postures against complex backgrounds in video images is presented. The system employs elastic graph matching, which has already been successfully applied for object and face recognition. We use the bunch graph technique to model variance in hand posture appearance between different subjects and variance in backgrounds. Our system does not n...
متن کاملVisual Recognition of Hand Postures for Interacting with Virtual Environments
The paper addresses the problem of visual recognition of several hand postures corresponding to a few operations commonly performed in virtual environments, such as: object selection, translation, rotation and resizing. Processing is performed in a top-view scenario with a top-mounted camera that monitors the user’s hands on the working desktop. By careful choosing and controlling of the scene ...
متن کاملReasoning about Body-Parts Relations for Sign Language Recognition
Over the years, hand gesture recognition has been mostly addressed considering hand trajectories in isolation. However, in most sign languages, hand gestures are defined on a particular context (body region). We propose a pipeline to perform sign language recognition which models hand movements in the context of other parts of the body captured in the 3D space using the MS Kinect sensor. In add...
متن کاملSpatio-Temporal Hough Forest for efficient detection-localisation-recognition of fingerwriting in egocentric camera
Recognising fingerwriting in mid-air is a useful input tool for wearable egocentric camera. In this paper we propose a novel framework to this purpose. Specifically, our method first detects a writing hand posture and locates the position of index fingertip in each frame. From the trajectory of the fingertip, the written character is localised and recognised simultaneously. To achieve this chal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000